Explicit-Duration Hidden Markov Model Inference of UP-DOWN States from Continuous Signals
نویسندگان
چکیده
Neocortical neurons show UP-DOWN state (UDS) oscillations under a variety of conditions. These UDS have been extensively studied because of the insight they can yield into the functioning of cortical networks, and their proposed role in putative memory formation. A key element in these studies is determining the precise duration and timing of the UDS. These states are typically determined from the membrane potential of one or a small number of cells, which is often not sufficient to reliably estimate the state of an ensemble of neocortical neurons. The local field potential (LFP) provides an attractive method for determining the state of a patch of cortex with high spatio-temporal resolution; however current methods for inferring UDS from LFP signals lack the robustness and flexibility to be applicable when UDS properties may vary substantially within and across experiments. Here we present an explicit-duration hidden Markov model (EDHMM) framework that is sufficiently general to allow statistically principled inference of UDS from different types of signals (membrane potential, LFP, EEG), combinations of signals (e.g., multichannel LFP recordings) and signal features over long recordings where substantial non-stationarities are present. Using cortical LFPs recorded from urethane-anesthetized mice, we demonstrate that the proposed method allows robust inference of UDS. To illustrate the flexibility of the algorithm we show that it performs well on EEG recordings as well. We then validate these results using simultaneous recordings of the LFP and membrane potential (MP) of nearby cortical neurons, showing that our method offers significant improvements over standard methods. These results could be useful for determining functional connectivity of different brain regions, as well as understanding network dynamics.
منابع مشابه
Bayesian Nonparametric Learning with semi-Markovian Dynamics
There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning from sequential and time-series data. However, in many settings the HDP-HMM’s strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can exte...
متن کاملBayesian nonparametric hidden semi-Markov models
There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDPHMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning from sequential and time-series data. However, in many settings the HDP-HMM’s strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can exten...
متن کاملEstimating Latent Attentional States Based on Simultaneous Binary and Continuous Behavioral Measures
Cognition is a complex and dynamic process. It is an essential goal to estimate latent attentional states based on behavioral measures in many sequences of behavioral tasks. Here, we propose a probabilistic modeling and inference framework for estimating the attentional state using simultaneous binary and continuous behavioral measures. The proposed model extends the standard hidden Markov mode...
متن کاملACh and NE : Bayes , Uncertainty , Attention , and Learning
Uncertainty in various forms plagues our interactions with the environment. In a Bayesian statistical framework, optimal inference and learning, based on imperfect observation in changing contexts, require the representation and manipulation of different forms of uncertainty. We propose that the neuromodulatory systems such as acetylcholine (ACh) and norepinephrine (NE) play a major role in the...
متن کاملACh, Uncertainty, and Cortical Inference
Acetylcholine (ACh) has been implicated in a wide variety of tasks involving attentional processes and plasticity. Following extensive animal studies, it has previously been suggested that ACh reports on uncertainty and controls hippocampal, cortical and cortico-amygdalar plasticity. We extend this view and consider its effects on cortical representational inference, arguing that ACh controls t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011